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LITERATURE REVIEW 

Wavelet Regression 

Regression is perhaps the field of statistics 

that has received the most attention by 

researchers in wavelet methods, where 

wavelet methods are usually used as a form 

of nonparametric regression, and the 

techniques take many names such as wavelet 

reduction, estimation of non-parametric 

curve or wavelet regression, and generally In 

general, the nonparametric regression itself 

constitutes an important and vital field of 

modern statistics. The general idea of the 

wavelet regression work is explained 

according to the following: 

Let our observations ( ) 

be given in the following form: 

 

where (  ), and the objective is to 

estimate ( ) the unknown function 

( ) using scrambled observations of 

.  

The concept of wavelet shrinkage or wavelet 

regression was introduced to the statistical 

literature by researcher Donoho 1995, and 

the general idea of applying the 

discontinuous wavelet transformation to the 

above model is summarized (1), whereby 

Mallat algorithm is used. 

Let ( ) represent the observations, (g) 

represent the unrated function and ( ) 

represent the error or noise, and through the 

discontinuous wavelet transform, the 

transformation model can be written as 

follows: 

 

ABSTRACT 

 

The wavelet reduction technique is one of the best techniques used in estimating the 

nonparametric regression function, but it is affected in the event that the errors are related, so 

(Jonstone) suggested a level-dependent thresholding method to extract the signal from the 

associated noise. In this paper, a number of types of thresholds will be selected that reduce the 

risk criterion in estimating the nonparametric regression function and in the presence of a 

correlation in errors, and these methods are (False Discovery Rate Thresholding), (Bayesshrink 

Thresholding) and (Universal Thresholding), as simulation experiments were used using Three 

test and correlation functions of type (AR(1)), sample sizes (64, 128) and different noise ratios. It 

was found that the best methods were the (False Discovery Rate Thresholding) method, followed 

by the (Bayesshrink Thresholding) method, while the comprehensive threshold method declined 

in light of Correlation problem at sample size (128). 
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whereas  :  

  is the 

wavelet transformation matrix. 

Three essential characteristics of successful 

wavelet reduction: 

a) The wavelet transforms are adapted to 

many functions (discrete and 

heterogeneous smoothing functions). 

b) Furthermore, due to the Parsvaal relation, 

the energy is in the domain of the 

function  It is equal to the sum of 

the squares of the wavelet coefficients 

 However, if the contrast is taken 

into account, it means that the energy of 

the original signal is concentrated in less 

coefficients and nothing is lost, and 

therefore for the contrast of noise the 

vector (d) will not only be scattered but 

the values themselves are often larger. 

c) By (w) resulting from the discrete 

transformation is an orthogonal matrix. 

This means that the noise transformation 

wavelet, which is white noise, remains 

white noise after the transformation and 

is spread evenly over all the wavelet 

coefficients. 

Based on the above properties, 

Dunno and Johnston (1994) 

suggested scaling the following 

wavelet which we need in estimating 

the function g( ), The basic idea was 

that the large values of the wavelet 

coefficients ( ), were more likely 

cases consisting of real signal and 

noise while the small coefficients 

were due to noise only, and then to 

estimate (d) successfully I found the 

threshold idea of estimating ( ) by 

removing the coefficients in ( ) that 

They are smaller than some threshold 

and essentially preserve larger 

coefficients. 

 

Thresholding Rules 

The stage of removing noise in the signal 

is one of the most important steps for 

estimating the regression function using 

wavelet reduction, as the selection of the 

threshold contributes to removing noise 

and in turn preserving the coefficients of 

the original signal because the 

coefficients of noise are of lower 

frequency than the frequency of the 

coefficients of the original signal. 

Thresholding process can be carried out 

in several ways, the most important and 

most common are the soft Thresholding 

method and Hard Thresholding method. 

 

Hard Thresholding 

It is a simplified method by zeroing the 

elements whose absolute value is less 

than the threshold and is expressed 

mathematically: 



 

206 

 

 

 

Volume: 11, Issue: 3, July-September 2021 

 

INTERNATIONAL JOURNAL OF TRANSFORMATIONS IN BUSINESS MANAGEMENT 

 

 

 

where λ is the Thresholding value. 

 

Soft Thresholding 

It is an extension of the previous method 

and differs from it that after the elements 

whose absolute value is less than the 

threshold are zeroed, the non-zero 

elements are shifted towards zero, and it 

is expressed mathematically by the 

following relationship: 

 

 

 

where λ is the Thresholding value. 

 

 

Figure (1) represents the threshold functions of linear 

 (a), solid (b), and elastic (c). 

 

Threshold Value 

Threshold value ( ) is a very important 

parameter in the wavelet reduction 

algorithm to reduce the noise experienced 

by the signal, as this noise will be 

directly affected by choosing the 

appropriate threshold value, there are 

many types of threshold values.  

 

Universal Thresholding 

The global threshold method was 

presented by Donoho and Jonstone and is 

given according to the following 

formula: 

 

whereas  :  

n : the length of the signal. 

σ : The standard deviation of the noise 

level. 

Choosing the threshold to be ( ) 

would increase the high probability 

noise. 
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False Discovery Rate Thresholding 

It was presented by Abramovich & 

Bengamini as one of the methods for 

selecting the threshold value, as the 

problem of determining the non-zero 

distorted wavelet coefficients was 

formulated here as a multiple hypothesis 

test problem, for each wavelet parameter 

() we want to test the following 

hypothesis: 

 

 

to each 1,........,2,1,0  Jj  , 

12,........,2,1,0  jk .  

If there is only one hypothesis it will be 

easy to represent one of the many 

possible hypothesis tests to make a 

decision, however since there are many 

wavelet coefficients the problem is to 

perform multiple tests. The frequency of 

the significance test is rarely a single test. 

For example, when (n=1024) was 

( ), the number of coefficients to 

be tested is (nα), it is equal to 51 

coefficients which are assumed to be 

positive, since sometimes some of these 

coefficients have a zero sign ( ) 

for each (j,k), in other words will be 

Many coefficients are incorrectly 

detected as a positive sign. 

The basic idea of this method is to 

assume that (R) is the number of 

operands that are not set to zero by some 

threshold procedure, and (S) is held 

correctly, (S) is the number of operands 

( ) that are not set to zero, and (v) ) 

are the operands that are kept erroneously 

(i.e. that (v) of the operands of ( ) 

should not be kept) because ( ) is zero 

for those operands. 

and that (R=V+S) expresses the error in 

such a procedure (Q=V/R) which was 

wrongly kept out of all the parameters 

that were kept. If (R=0) this means that 

(Q=0), here the parameter false discovery 

rate is defined as expectation ) Q (, The 

FDR method works assuming m the 

number of parameters is defined as: 

a. For each ( ) the value of (P) is 

calculated on both sides and ( ) 

and then we find: 

( ) 

b. Arrange ( ) by its size 

(p(1) ) as each 

( ) corresponds to some parameter 

of ( ). 

c. Let ( ) for ( ) 

 

d. Threshold of all coefficients at level 

( ).  

 

Bayesshrink Thresholding 

The Bayesian methods are one of the 

important methods in wavelet reduction, 
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as their work is summarized by reducing 

the risks (R) in the equation for the bis 

method:  

.........(6) 

Where ( ) and 

(y/ ) assuming that ( ) 

follows the Gaussian Distribution where  

( ).  

Accordingly, the optimal threshold value 

can be obtained by solving the following 

equation: 

 

 

 

Whereas 
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By numerically calculating the approximate threshold, we find that it approaches the optimal 

threshold so that it is equal to: 

x




2

  

Error link issue: 

In real situations, the noise structure is 

often coherent and thus wavelet 

estimations fail to reconstruct a coherent 

noise signal, due to the fact that the 

wavelet transformations of a coherent 

noise signal provide a series of coherent 

waveform parameters whose differences 

in the wavelet coefficients will depend on 

the level of accuracy in Wavelet analysis, 

but it will be constant at each level. 

As a result, the use of a Global Threshold 

usually breaks down with great difficulty 

in providing an appropriate threshold 
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value for the wavelet coefficients at all 

desired levels Jonston & Silverman 

(1997). 

Researchers have begun to study 

situations for which noise is no longer 

independent eg Chipman (1998) and 

Opsomer. Therefore, in theory, the 

associated noise can affect the 

performance of wavelet gradient, but it is 

not clear to what extent the known 

theoretical results reflect what happens in 

practical situations. 

However, the researchers did not stand 

idly by in front of this problem, and there 

were many attempts to overcome this 

problem and obtain efficient estimates, 

and the most prominent of these 

treatments is choosing an appropriate 

threshold value when estimating using 

wavelet reduction. 

Estimation Methods 

The basic idea in the estimation methods 

is the most appropriate choice of the 

threshold value, which has a decisive 

impact on the accuracy and efficiency of 

the estimation, especially in the case of 

the correlation of errors, and as it was 

clarified in the selection methods in the 

threshold value, so the general method of 

estimation will be explained and that the 

difference in the methods used comes 

from the different threshold values Used 

in the packing process, which is the main 

part of the estimation process using 

wavelet reduction. 

The general steps for assessment are 

summarized as follows: 

a. A second-degree polynomial model is 

used for the purpose of addressing the 

boundary problem, which is a general 

problem that nonparametric 

estimations suffer from, including 

wavelet estimations, as the function 

( ) is estimated according to the 

equation below.  

22110
ˆˆˆˆ xbxbby   

b. Find the residuals ( ) using the 

following formula: 

iii yye ˆ ……(

8) 

c. The wavelet reduction method is 

applied to the residuals through the 

following: 

 Finding the values of the wavelet 

coefficients (w) by performing 

the discrete wavelet transform 

over the residuals ( ). 

 

W= ………...(9) 

 

Since (w) is a wavelet 

transformation matrix with an 

orthogonal wavelet base. 

……….(7)   
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 The appropriate wavelet 

coefficients are selected by 

passing them through the soft 

threshold and using a threshold 

value from one of the threshold 

values shown in the theoretical 

side to find the threshold 

coefficients ( ). 

 The estimation of the regression 

function ( ) is found by 

finding the inverse of the discrete 

wavelet transform (IDWT) 

according to the following 

formula: 

 

*)(ˆ wWtg T …….(10) 

 

 

Test Function 

 

A. Doppler function: 

    05.0,)/()1(2sin)1()(
2/1

1   xxxxf ………(11) 

 

B. Heavisine function: 

)72.0sgn()3.0sgn(4sin4)(2 xxxxf   ………(12) 

C. Blocks function: 

  2/)sgn(1)(),()(3 xxkxxkhxf jj  ………(13) 

)81.0,78.0,76.0,65.0,44.0,40.0,25.0,23.0,15.0,13.0,1.0()( jx  

)2.4,1.2,1.3,3.4,1.2,2.4,5,4,5,4()( jh  
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Figure (2) Test functions 

 

Simulation 

Three test functions described above 

were used and a correlation in errors of 

the type (AR(1)) with two correlation 

parameters (0.4, 0.7), sample sizes 

( ) and ( ), two levels of 

noise were used (SNR =5,10). 

CONCLUSIONS: 

When using the (Doppler) function and with 

a correlation parameter (0.4, 0.7) and sample 

sizes (64, 128) and (SNR = 5, 10), the best 

estimation methods are the (Universal 

Thresholding) method, followed by the 

(False Discovery Rate Thresholding) 

method, then the (False Discovery Rate 

Thresholding) method. Bayesshrink 

Thresholding. 

In the case of using the Heavisin function, it 

was found that the Bayesshrink Thresholding 

method is highly efficient at (SNR = 5), 

sample size (64), and correlation (0.40), 

followed by the (False Discovery Rate 

Thresholding) method, while the efficiency 

of the above methods converges. At a 

correlation (0.70) and a sample size of (64), 

while at a sample size (128), the 

(Bayesshrink Thresholding) method gives 

the best estimate, followed by the (False 

Discovery Rate Thresholding) method at a 

correlation (0.40), while the (False Discovery 

Rate Thresholding) method excels. At a 
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correlation (0.70), followed by (Universal 

Thresholding). But in the case of using the 

(Blocks) function, it is clear that the method 

of (False Discovery Rate Thresholding) is 

superior to the sample size, correlation 

parameter, and different disturbance rates. 

 

Table No. (1) shows the average sum of mean squares error (MSE) using the Doppler function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table No. (2) shows the average sum of mean squares 

 error (MSE) using the Heavisin function 

 

SNR=5                                   

n=64                                      

FDR PW Bayes PW UNIPW 

0.034252372 0.044072604 0.031238870 0.40 

0.038353180 0.042059405 0.03070347 0.70 

SNR=5 

n=128     

0.039540183 0.047403645 0.036249572 0.40 

0.041463855 0.048198886 0.036619573 0.70 

SNR=10 

n=64 

0.03808286 0.04534398 0.03400737 0.40 

0.04227809 0.04872265 0.033615483 0.70 

SNR=10 

n=128 

0.04255514 0.046753602 0.036007128 0.40 

0.039538667 0.044821539 0.034171310 0.70 
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Table No. (3) shows the average sum of mean squares 

 error (MSE) using the Blocks function 

 

SNR=5                                   

n=64                                      

FDR PW Bayes PW UNIPW 

0.05121784 0.05090477 0.05221770 0.40 

0.06007991 0.06043290 0.06059649 0.70 

SNR=5 

n=128     

0.05375606 0.05343519 0.05694865 0.40 

0.05738160 0.05940961 0.05765072 0.70 

SNR=10 

n=64 

0.05376025 0.05384871 0.05429333 0.40 

0.043295833 0.043331087 0.044154296 0.70 

SNR=10 

n=128 

0.05072455 0.05126225 0.05141954 0.40 

0.05090908 0.05168991 0.05136628 0.70 
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SNR=5                                   

n=64                                      

FDR PW Bayes PW UNIPW 

0.06498236 0.06900870 0.07317259 0.40 

0.06401480 0.07235679 0.07031079 0.70 

SNR=5 

n=128     

0.06141250 0.07305147 0.06852533 0.40 

0.06138189 0.07338275 0.06057767 0.70 

SNR=10 

n=64 

0.06607583 0.07157032 0.07162636 0.40 

0.07739078 0.08103836 0.08076263 0.70 

SNR=10 

n=128 

0.06474073 0.07660869 0.06760367 0.40 

0.06074824 0.07221573 0.05993789 0.70 
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